Abstract

ABSTRACTThe recombination current in polycrystalline silicon on glass solar cells can be modeled by the superposition of two processes, one which involves only shallow electronic levels and another which occurs via deep levels at charged extended defects. The former process is most likely linked to clean dislocations, whereas the latter may originate either from charged dislocations or grain boundaries. The consideration of both kinds of processes is necessary for an accurate description of the device behaviors of poly‐Si on glass solar cells over a wide range of dopant densities. The effects of varying the impurity and dislocation densities are also briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call