Abstract
The synthesis of lipids in response to food intake represents a key advantage that allows organisms to survive when energy availability is limited. In mammals, circulating levels of insulin and nutrients, which fluctuate between fasting and feeding, dictate whether lipids are synthesized or catabolized by tissues. The mechanistic target of rapamycin (mTOR), a kinase that is activated by anabolic signals, plays fundamental roles in regulating lipid biosynthesis and metabolism in response to nutrition. The mTOR kinase nucleates two large protein complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Following their activation, these complexes facilitate the accumulation of triglycerides by promoting adipogenesis and lipogenesis and by shutting down catabolic processes such as lipolysis and β-oxidation. Here, we review and discuss the roles of mTOR complexes in various aspects of lipid metabolism in mammals. We also use this opportunity to discuss the implication of these relations to the maintenance of systemic lipid homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.