Abstract

AbstractWe study the redshift evolution of neutral and molecular gas in the interstellar medium with the results from semi-analytic models of galaxy formation and evolution, which track the cold gas related physical processes in radially resolved galaxy disks. Two kinds of prescriptions are adopted to describe the conversion between molecular and neutral gas in the ISM: one is related to the gas surface density and gas metallicity based on the model results by Krumholz, Mckee & Tumlinson; the other is related the pressure of ISM. We try four types of star formation laws in the models to study the effect of the molecular gas component and the star formation time scale on the model results, and find that the H2 dependent star formation rate with constant star formation efficiency is the preferred star formation law. We run the models based on both Millennium and Millennium II Simulation haloes, and the model parameters are adjusted to fit the observations at z = 0 from THINGS/HERACLES and ALFALFA/COLD GASS. We give predictions for the redshift evolution of cosmic star formation density, H2 to HI cosmic ratios, gas to star mass ratios and gas metallicity vs stellar mass relation. Based on the model results, we find that: (i) the difference in the H2 to HI ratio at z > 3 between the two H2 fraction prescriptions can help future observations to test which prescription is better; (ii) a constant redshift independent star formation time scale will postpone the star formation processes at high redshift and cause obvious redshift evolution for the relation between gas metallicity and stellar mass in galaxies at z < 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.