Abstract

Exact analytical expressions for the switching delay of an inverter driving an RC load, taking into account the velocity saturation, are obtained. Modified expressions to include the effect of source resistance are then presented. Owing to the limitation on switching current imposed by the velocity saturation mechanism, the switching delay is substantially increased for identical width-to-length ratios of the MOSFET in a complementary MOS logic circuit. Obviously, it is important to increase the saturation velocity by miniband engineering or otherwise to improve the performance. However, it is found that the improvements in the time delay are marginal after a saturation velocity of 2.4*107 cm s-1 is reached. The effect of technologies aimed at circumventing the hot-electron and other deleterious effects is a longer delay time of the circuit due to increased series resistance. However, the effect of increased series resistance is substantially damped due to velocity saturation. These results are particularly important in designing CMOS circuits with submicrometre MOSFET dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.