Abstract
The administration of FVIII leads to inhibitors in up to 30% of patients with hemophilia A (HA), the most severe treatment complication. FVIII-mannosylation fosters the presentation of FVIII to CD4+-T-lymphocytes. Mannose as primary ligand for the mannose-binding lectin (MBL) activates the lectin pathway of complement. MBL2 single nucleotide polymorphisms (SNPs) lead to low peripheral MBL concentrations that may hamper the removal of mannosylated FVIII. Investigation of the association between the inhibitor development in hemophilia A and MBL2-SNPs. In a case-control study the MBL2-SNPs in exon 1 at codons 52, 54 and 57 (C, B, D-Alleles respectively) were determined in 237 patients with severe hemophilia A with and without inhibitors to FVIII (119 vs 118). The association of MBL2-SNPs and the -308 G>A TNF-α-polymorphism with the presence of inhibitors were determined. In the inhibitor group higher frequencies of the B allele (codon 54) (OR: 1.77, P < 0.05) were present. Summarising the MBL2 SNPs (alleles B, C and D) as 0, the 0/0 type occurred only in the inhibitor group (frequencies: 0.08 vs 0, P = 0.003). Based on the genetic background a functional immune response phenotype was determined. 11.8% of patients with inhibitors were of the low MBL/high TNF-α phenotype vs 0.03% of the non-inhibitor patients (OR: 3.71). Data suggest an association of MBL2-SNPs alone or combined with the 308-TNF-α polymorphism in the inhibitor development. Investigations of components of all three complement pathways are required to comprehend their individual and overall contribution to the inhibitor development in HA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have