Abstract

Azole resistance of Candida tropicalis has, in recent years, become a serious issue in hospitals; however, there is limited knowledge of the mechanisms underlying this resistance. We have previously demonstrated that ERG11 plays a vital role in azole resistance in C. tropicalis. Here, we describe the expression and sequence variation of UPC2, which encodes a transcription factor of ERG11. Quantitative real-time RT-PCR showed that 31 azole-resistant C. tropicalis strains significantly overexpressed UPC2. Those isolates resistant to all three azole antifungals upregulated UPC2 expression to a greater degree than those resistant to only fluconazole or itraconazole. The UPC2 promoter contains mutations -118T-G and -155G-A in azole-resistant strains of C. tropicalis. Meanwhile, the mutation G392E was also detected twice in UPC2 gene in azole-resistant C. tropicalis and was demonstrated to mediate azole antifungal susceptibility by using Saccharomyces cerevisiae as an expression host, particularly for fluconazole and itraconazole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call