Abstract
The thin filament extraction and reconstitution protocol was used to investigate the functional roles of tropomyosin (Tm) isoforms and phosphorylation in bovine myocardium. The thin filament was extracted by gelsolin, reconstituted with G-actin, and further reconstituted with cardiac troponin together with one of three Tm varieties: phosphorylated alphaTm (alphaTm.P), dephosphorylated alphaTm (alphaTm.deP), and dephosphorylated betaTm (betaTm.deP). The effects of Ca, phosphate, MgATP and MgADP concentrations were examined in the reconstituted fibres at pH 7.0 and 25 degrees C. Our data show that Ca(2+) sensitivity (pCa(50): half saturation point) was increased by 0.19 +/- 0.07 units when betaTm.deP was used instead of alphaTm.deP (P < 0.05), and by 0.27 +/- 0.06 units when phosphorylated alphaTm was used (P < 0.005). The cooperativity (Hill factor) decreased (but insignificantly) from 3.2 +/- 0.3 (5) to 2.8 +/- 0.2 (7) with phosphorylation. The cooperativity decreased significantly from 3.2 +/- 0.3 (5) to 2.1 +/- 0.2 (9) with isoform change from alphaTm.deP to betaTm.deP. There was no significant difference in isometric tension or stiffness between alphaTm.P, alphaTm.deP, and betaTm.deP muscle fibres at saturating [Ca(2+)] or after rigor induction. Based on the six-state cross-bridge model, sinusoidal analysis indicated that the equilibrium constants of elementary steps differed up to 1.7x between alphaTm.deP and betaTm.deP, and up to 2.0x between alphaTm.deP and alphaTm.P. The rate constants differed up to 1.5x between alphaTm.deP and betaTm.deP, and up to 2.4x between alphaTm.deP and alphaTm.P. We conclude that tension and stiffness per cross-bridge are not significantly different among the three muscle models.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have