Abstract

The iron-carrying serum protein transferrin is required for the proliferation and differentiation of embryonic tissues in culture. We studied the expression and role of transferrin receptors in two model systems using a monoclonal antibody against the transferrin receptor of mice. The addition of 20–100 μg/ml antibody to a chemically defined culture medium containing transferrin (10 μg/ml) inhibited morphogenesis and cell proliferation in kidneys and teeth. However, the antibody did not inhibit development when iron was delivered to the cells by a lipophilic iron chelator i.e., by-passing the receptor-mediated pathway. Hence, the binding of the receptor antibody to the receptor apparently did not affect cell proliferation, and the antibody was not toxic to the tissues. Our results suggest that the antibody to the transferrin receptor inhibits development by blocking the normal endocytotic route of iron delivery. Cells derived from embryonic kidneys and teeth expressed the transferrin receptor when cultured as mono-layers. However, using immunofluorescent techniques, we were unable to detect the receptor in frozen tissue sections. It is possible that the seeding of cells in monolayer cultures affects the expression of the transferrin receptor, since it is known that all types of cells require transferrin for continued proliferation in culture. Organ-cultured kidney mesenchymal cells are not initially responsive to transferrin, but they acquire responsiveness as a consequence of an inductive tissue interaction. Although it remains unknown as to whether the acquisition of transferrin responsiveness is directly related to the expression of transferrin receptors, our results suggest that transferrin and its receptors play a role in embryonic morphogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.