Abstract
BackgroundElastography is a promising way to evaluate tissue differences regarding stiffness, and the stiffness of the malignant breast lesions increased at the lesion margin. However, there is a lack of data on the value of the shear wave elastography (SWE) parameters of the surrounding tissue (shell) of different diameter on the diagnosis of benign and malignant breast lesions. Therefore, the purpose of our study was to evaluate the diagnostic performance of shell elasticity in the diagnosis of benign and malignant breast lesions using SWE.MethodsBetween September 2016 and June 2017, women with breast lesions underwent both conventional ultrasound (US) and SWE. Elastic values of the lesions peripheral tissue were determined according to the shell size, which was automatically drawn along the edge of the lesion using the following software guidelines: (1): 1 mm; (2): 2 mm; and (3): 3 mm. Quantitative elastographic features of the inner lesions and shell, including the elasticity mean (Emean), elasticity maximum (Emax), and elasticity minimum (Emin), were calculated using an online-available software. The receiver operating characteristic curves (ROCs) of the elastographic features was analyzed to assess the diagnostic performance, and the area under curve (AUC) of each elastographic feature was obtained. Logistic regression analysis was used to predict significant factors of malignancy, permitting the design of predictive models.ResultsThis prospective study included 63 breast lesions of 63 women. Of the 63 lesions, 33 were malignant and 30 were benign. The diagnostic performance of Emax-3shell was the highest (AUC = 0.76) with a sensitivity of 60.6% and a specificity of 83.3%. According to stepwise logistic regression analysis, the Emax-3shell and the Emin-3shell were significant predictors of malignancy (p < 0.05). The AUC of the predictive equation was 0.86.ConclusionsSWE features, particularly the combination of Emax-3shell and Emin-3shell can improve the diagnosis of breast lesions.
Highlights
Elastography is a promising way to evaluate tissue differences regarding stiffness, and the stiffness of the malignant breast lesions increased at the lesion margin
Study population A total of 63 patients with breast lesions were enrolled in this study
No significant differences were observed in the size of the benign and malignant breast lesions (p > 0.05)
Summary
Elastography is a promising way to evaluate tissue differences regarding stiffness, and the stiffness of the malignant breast lesions increased at the lesion margin. There is a lack of data on the value of the shear wave elastography (SWE) parameters of the surrounding tissue (shell) of different diameter on the diagnosis of benign and malignant breast lesions. SWE provides quantitative values for the Young elastic modulus (in kilopascals) of tissues by imaging shear wave propagation, avoiding the shortcomings of SE [13, 14]. To our knowledge, the value of the SWE parameters of the different shell sizes on the diagnosis of benign and malignant breast lesions has not been assessed. In this prospective study, we hypothesized that these parameters might permit the differentiation between benign and malignant breast lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.