Abstract

The role of the Weibel instability is investigated for the first time in the context of the large-scale magnetic reconnection problem. A late-time evolution of magnetic reconnection in relativistic pair plasmas is demonstrated by particle-in-cell simulations. In the outflow regions, powerful reconnection jets pile up the magnetic fields and then a contact discontinuity appears there. Further downstream, it is found that the two-dimensional extension of the relativistic Weibel instability generates electromagnetic fields, which are comparable to the antiparallel or piled-up fields. In a microscopic viewpoint, the instability allows the plasma’s multiple interactions with the discontinuity. In a macroscopic viewpoint, the instability leads to rapid expansion of the current sheet and then the reconnection jet front further propagates into the downstream. Possible application to the three-dimensional case is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call