Abstract

We study the role of the guide field in relativistic magnetic reconnection in a Harris current sheet of pair (e±) plasmas, using linear theories and particle-in-cell (PIC) simulations. Two-dimensional PIC simulations exhibit the guide field dependence to the linear instabilities; the tearing or reconnection modes are relatively insensitive, while the relativistic drift-kink instability (RDKI), the fastest mode in a relativistic current sheet, is stabilized by the guide field. Particle acceleration in the nonlinear stage is also investigated. A three-dimensional PIC simulation demonstrates that the current sheet is unstable to the RDKI, although a small reconnection occurs in the deformed current sheet. Another three-dimensional PIC simulation with a guide field demonstrates a completely different scenario. Secondary magnetic reconnection is triggered by nonlinear coupling of oblique instabilities, which we call the relativistic drift-sausage tearing instability. Therefore, particle acceleration by relativistic guide field reconnection occurs in three-dimensional configuration. Based on the plasma theories, we discuss an important role of the guide field: to enable nonthermal particle acceleration by magnetic reconnection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.