Abstract

Purple phototrophic bacteria use a 'photosystem' consisting of light harvesting complex 1 (LH1) surrounding the reaction centre (RC) that absorbs far-red-near-infrared light and converts it to chemical energy. Blastochloris species, which harvest light >1000 nm, use bacteriochlorophyll b rather than the more common bacteriochlorophyll a as their major photopigment, and assemble LH1 with an additional polypeptide subunit, LH1γ, encoded by multiple genes. To assign a role to γ, we deleted the four encoding genes in the model Blastochloris viridis. Interestingly, growth under halogen bulbs routinely used for cultivation yielded cells displaying an absorption maximum of 825 nm, similar to that of the RC only, but growth under white light yielded cells with an absorption maximum at 972 nm. HPLC analysis of pigment composition and sucrose gradient fractionation demonstrate that the white light-grown mutant assembles RC-LH1, albeit with an absorption maximum blue-shifted by 46 nm. Wavelengths between 900-1000 nm transmit poorly through the atmosphere due to absorption by water, so our results provide an evolutionary rationale for incorporation of γ; this polypeptide red-shifts absorption of RC-LH1 to a spectral range in which photons are of lower energy but are more abundant. Finally, we transformed the mutant with plasmids encoding natural LH1γ variants and demonstrate that the polypeptide found in the wild type complex red-shifts absorption back to 1018 nm, but incorporation of a distantly related variant results in only a moderate shift. This result suggests that tuning the absorption of RC-LH1 is possible and may permit photosynthesis past its current low-energy limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call