Abstract

The great importance of the secondary structure (compressed/stretched) of helical poly(phenylacetylene)s (PPAs) in the formation of nanostructures (nanospheres and nanotoroids) by complexation with metal ions of diverse valences is demonstrated. PPAs bearing the same chelating units [anilide of (R)-methoxyphenylacetic acid] but displaying different helical scaffolds show great differences in their nanostructuration due to the different secondary structures of their helices despite the analogous ways in which their mono- and divalent metal ions form complexes. This key 3-D structural feature has not been taken into account previously when studying the nanostructuration of helical polymer-metal complexes (HPMCs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call