Abstract
In the mammalian heart the supply of oxygen and energy-rich substrates through the coronary arterioles is continuously adapted to the variations of cardiac work. The coronary resistance arteries and the surrounding myocardium form a functional unit with multiple interactions between coronary endothelial cells, smooth muscle cells, perivascular nerves, and cardiac muscle cells. We describe the mechanisms underlying the electrical and chemical communication between the different cell types, the ionic channels contributing to the resting potential of endothelial and smooth muscle cells, and the mechanisms responsible for modulation of the resting potential. The main conclusion of our analysis is that the membrane potential of coronary endothelial and smooth muscle cells is one of the major determinants of coronary blood flow, and that modulation of the membrane potential provides a way to dilate or constrict coronary resistance arteries. It is proposed that the membrane potential of the myo-endothelial regulatory unit, i.e., of the endothelial cells and the underlying smooth muscle cells in the terminal arterioles, may function as an integrator of the numerous local and global vasodilator and constrictor signals that provide for the adaptation of coronary blood flow to the metabolic demands of the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.