Abstract

Graphene-based transistors relying on a conventional structure cannot switch properly because of the absence of an energy gap in graphene. To overcome this limitation, a barristor device was proposed, whose operation is based on the modulation of the graphene-semiconductor (GS) Schottky barrier by means of a top gate, and demonstrating an ON-OFF current ratio up to 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> . Such a large number is likely due to the realization of an ultraclean interface with virtually no interface trapped charge. However, it is indeed technologically relevant to know the impact that the interface trapped charges might have on the barristor's electrical properties. We have developed a physics-based model of the gate tunable GS heterostructure where nonidealities, such as Fermi level pinning and a “bias-dependent barrier lowering effect” have been considered. Using the model, we have made a comprehensive study of the barristor's expected digital performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.