Abstract

Early in ontogeny, young rats must be able to detect dangerous stimuli and to exhibit appropriate defensive behaviors. Different nuclei of the amygdala mediate unconditioned and conditioned fear responses to threat in adult rats. The aim of this study was to determine the role of the amygdala in unlearned fear behavior in young rats. When exposed to an unfamiliar adult male rat, preweaning rat pups freeze, with peak levels on postnatal day 14 and declining levels on day 18. Pups were made anosmic to block olfactory input to the amygdala, and amygdala activation was assessed by quantifying the neuronal marker c-fos. Anosmic pups did not freeze in the presence of the male rat and had decreased c-fos expression in the medial amygdala on day 14 and in the medial and lateral amygdala on day 18. However, the decrease in freezing between days 14 and 18 was not associated with a decrease in c-fos expression in the medial amygdala. The medial and lateral amygdala were then inactivated by local muscimol infusion on day 14. Muscimol infusion into the medial amygdala decreased freezing to the male rat but not to a loud noise, whereas infusion into the lateral amygdala blocked freezing to a loud noise but not to the male. These findings indicate that different nuclei of the amygdala process sensory information of different modalities, mediate unconditioned freezing, and may be involved in developmental changes in the fear response in young rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call