Abstract
Multi-walled carbon nanotubes (MWCNTs) can be aligned along electric field lines between transparent electrodes to form a conductive network. In this work, MWCNTs were successfully deposited across indium tin oxide (ITO) electrodes using dielectrophoretic (DEP) force. For the first time, the deposition of MWCNTs across ITO electrodes separated by a distance of 50 μm is demonstrated to form an aligned network. The role of the AC signal amplitude, frequency, and duration is investigated experimentally. We found that the alignment was improved as the frequency increases (>105 Hz), while the minimum amplitude per the unit distance to deposit MWCNTs across ITO electrodes was 0.2 V/μm. The deposition process is observed in real-time using optical microscopy, and the aligned MWCNTs are observed with FeSEM spectroscopy. The study also investigates the resistivity, density and length of the aligned MWCNTs as a function of time. The deposition of MWCNTs across transparent electrodes using a room temperature method that requires a simple setup has potential use in future transparent electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.