Abstract

Quasi-equilibrium directional crystallization was performed on a melt composition (at. %): 18.50 Cu, 32.50 Fe, 48.73 S, 0.03 Pt, Pd, Ag, Au, Te, As, Bi, Sb, and Sn, which closely resembles the Cu-rich massive ores found in the platinum-copper-nickel deposits of Norilsk. Base metal sulfides (BMS) such as pyrrhotite solid solution (Fe,Cu)S1±δ (Poss), non-stoichiometric cubanite Cu1.1Fe1.9S3 (Cbn*), and intermediate solid solution Cu1.0Fe1.2S2.0 (Iss) are progressively precipitated from the melt during the crystallization process. The content of noble metals and semimetals in the structure of BMS is below the detection limit of SEM-EDS analysis. Only tin exhibits significant solubility in Cbn* and Iss, meanwhile Pt, Pd, Au, Ag, As, Bi, Sb, and Te are present as discrete composite inclusions, comprising up to 11 individual phases, within their matrices. These microphases correspond to native Au, native Bi, hessite Ag2Te, sperrylite Pt(As,S)2, hedleyite Bi2Te, michenerite PdTeBi, froodite PdBi2, a solid solution of sudburite-sobolevskite-kotulskite Pd(Sb, Bi)xTe1−x, geversite PtSb2, and a multicomponent solid solution based on geversite Me(TABS)2, where Me = Σ(Pt, Pd, Fe, Cu) and TABS = Σ(Te, As, Bi, Sb, Sn). Most of the inclusions occur as thin layers between BMS grain boundaries or appear drop-shaped and subhedral to isometric grains within the sulfide matrix. Only a small fraction of the trace elements form mineral inclusions of sizes ≤ 0.5 μm in Poss, most likely including PtAs2 and (Pt,Pd)S. It is likely that the simultaneous presence of noble metals (Pt, Pd, Au, Ag) and semimetals (As, Te, Bi, Sb) in the sulfide melt leads to the appearance of liquid droplets in the parent sulfide melt after pyrrhotite crystallization. The solidification of droplets during the early stages of Cbn* crystallization may occur simultaneously with the cooling of later fractions of the sulfide melt, resulting in the formation of Iss. In addition, abundant gas voids containing micro-inclusions were observed in Cbn* and Iss. These inclusions showed similar chemical and mineral compositions to those in BMS matrices, i.e., the presence of gas bubbles did not affect the main features of noble metal fractionation and evolution. Therefore, it is reasonable to assume that ore particles suspended in the melt are either trapped by defects at the crystallization front or transported towards gas bubbles via the Marangoni effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call