Abstract

The possible role of STIM1 protein in the regulation of activity of receptor- and store-operated Ca2+ channels in non-excitable cells has been studied. Receptor- and store-operated Ca2+ influxes have been measured using the fluorescent method of detection of cytosolic Ca2+ concentration and the electrophysiological methods of whole-cell and single-channel current recordings in the control HEK293 cells and in HEK293 cells with suppressed expression of STIM1. The experiments have shown that STIM1 suppression results in a reduction of the amplitudes of both receptor- and store-operated inward calcium currents. The decrease of total Ca2+ influx of in response to an agonist or to passive depletion of calcium stores upon STIM1 suppression was due to the decrease or total absence of the activity of high-conductance channels Imax and non-selective channels Ins in HEK293 cells. A decrease in the STIM1 amount also altered the activity regulation of low-conductance Imin channels that changed from exclusively agonist-operated into store-dependent channels in HEK293 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.