Abstract
We characterize infrared spectral energy distributions of 343 (Ultra) Luminous Infrared Galaxies from $z=0.3-2.8$. We diagnose the presence of an AGN by decomposing individual Spitzer mid-IR spectroscopy into emission from star-formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGN, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright $S_{24}$, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2-1000 $\mu$m). We fit the far-IR emission using a two temperature modified blackbody to measure cold and warm dust temperatures ($T_c$ and $T_w$). We find that $T_c$ does not depend on mid-IR classification, while $T_w$ shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to $L_{\rm IR}$. AGN, composites, and SFGs separate in $S_8/S_{3.6}$ and $S_{250}/S_{24}$, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR selected samples host an AGN, even at faint selection thresholds ($S_{24}$>100 $\mu$Jy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.