Abstract

Interactions of trace organic compounds (TOrCs) with polymeric nanofiltration (NF) membrane can affect their rejection. It is desirable to investigate whether solubility which depends on the free energy of interaction between these solutes and water correlates with rejection/adsorption and the potential to be incorporated in the partitioning terms of current NF model. A total of ten neutral disinfection by-products (DBPs) were selected as the model compounds for TOrCs to comprehensively investigate the role of solubility on rejection and adsorption. Pearson correlation analysis indicated that the correlation between MW and rejection ratio was highly significant (r=0.778, p=0.008) and that between solubility and rejection ratio was moderately significant (r=-0.636, p=0.48) in a cross-flow system. By fitting Freundlich equation from adsorption isotherm experiment, the adsorption affinity (K f) of DBPs was roughly correlated with their solubility with regard to the comparison of n value with 1. α was then introduced as a parameter of solute-membrane interaction from the perspective of partitioning term in the hydrodynamic model. Exponential relationship can be observed between the solubility and α, demonstrating the possibility of incorporating solubility into the partitioning terms in NF model to accurately predict the rejection of DBPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.