Abstract
The features of the participation of Smad3 in the functioning of neural stem cells (NSC), neuronal committed precursors (NCP), and neuroglial elements were studied in vitro. It was found that this intracellular signaling molecule enhances the clonogenic and proliferative activities of NCP and inhibits specialization of neuronal precursors. At the same time, Smad3 does not participate in the realization of the growth potential of NSC. With regard to the secretory function (production of neurotrophic growth factors) of neuroglial cells, the stimulating role of Smad3-mediated signaling was shown. These results indicate the promise of studying the possibility of using Smad3 as a fundamentally new target for neuroregenerative agents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have