Abstract
The prevalence of NAFLD is rapidly increasing. NAFLD can progress to NASH, fibrosis, cirrhosis, and HCC, which will soon become the main causes of liver transplantation. To date, no effective drug for NASH has been approved by the Food and Drug Administration. This is partly due to the lack of reliable human in vitro models. Here, we present a novel human liver spheroid model that can be used to study the mechanisms underlying liver fibrosis formation and degradation. Such spheroids, which contain hepatocytes, stellate cells, KC, and LSECs, spontaneously develop fibrosis that is exacerbated by treatment with free fatty acids. Conditioned medium from activated LSECs caused similar activation of fibrosis in spheroids containing primary human hepatocyte and NPCs, indicating the action of soluble mediators from the LSECs. Spheroids containing LSECs treated with free fatty acids produced tissue inhibitor of metalloproteinases inhibitor 1, a matrix metalloproteinases inhibitor important for fibrosis progression. Tissue inhibitor of metalloproteinases inhibitor 1 knockdown using siRNA led to a reduction in collagen and procollagen accumulation, which could be partially rescued using a potent matrix metalloproteinases inhibitor. Interestingly, tissue inhibitor of metalloproteinases inhibitor 1 was found to be expressed at higher levels, specifically in a subtype of endothelial cells in the pericentral region of human fibrotic livers, than in control livers. Potential anti-NASH drugs and compounds were evaluated for their efficacy in reducing collagen accumulation, and we found differences in specificity between spheroids with and without LSECs. This new human NASH model may reveal novel mechanisms for the regulation of liver fibrosis and provide a more appropriate model for screening drugs against NASH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.