Abstract
Chronic cerebral hypoperfusion (CCH) is a frequent ischemic cerebrovascular disease that induces brain dysfunction. Shunaoxin pills (SNX) are traditional Chinese medicines (TCM), frequently used for the treatment of CCH. The purpose of this study was to develop an activity-based screening system to identify the active ingredients of SNX. We developed a model of CCH and revealed that SNX induces cerebrovascular dilatation and protects against CCH-induced nerve cell injury in rats. Using the transcriptome analysis, we found that Ca2+-related signaling pathways play a major role in the effect of SNX against CCH. We developed an activity-based screening system based on the ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry coupled with a dual-luciferase reporter calcium assay to identify the active components of SNX. As a result, SNX dilates cerebral blood vessels, increasing cerebral blood flow by modulating calcium-related signaling pathways and regulating calcium homeostasis. Two calcium antagonists, ligustilide and senkyunolide I, were identified as active ingredients in SNX. In conclusion, we developed a rapid screening method suitable for the discovery of active natural products in TCM by integrating genomics and target pathway-oriented spectroscopic analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have