Abstract
5083 aluminum alloy is a light-weight and strain-hardened material used in high strain-rate applications such as those experienced under shock loading. Symmetric real-time (in situ) and end-state (ex situ recovery) plate impact shock experiments were conducted to study the spall response and the effects of microstructure on the spall properties of both 5083-H321 and 5083-ECAE + 30 % cold-rolled (CR) aluminum alloys shock loaded to approximately 1.46 GPa (~0.2 km/s) and 2.96 GPa (~0.4 km/s). The results show that mechanically processing the 5083-H321 aluminum by Equal Channel Angular Extrusion (ECAE), followed by subsequent CR significantly increases the Hugoniot Elastic Limit (HEL) by 78 %. However, this significant increase in HEL was at the expense of spall strength. The spall strength of the 5083-ECAE + 30 % CR aluminum dropped by 37 and 23 % when compared to their 5083-H321 aluminum counterpart at shock stresses of approximately 1.46 and 2.96 GPa respectively. This reduction in spall strength is attributed to the cracking and re-alignment of the manganese (Mn)–iron (Fe) rich second phase intermetallic particles during mechanical processing (i.e., ECAE and subsequent CR), which are consequently favorable to spallation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have