Abstract
In this paper we examine the role salt tectonics can play in a number of key energy transition technologies, namely, energy storage as gas in salt caverns (e.g. hydrogen and compressed air), CO2 storage, and geothermal energy. For each of these technologies we explore: i) fundamental concepts and driving forces; ii) how and why the properties of salt are of importance; and iii) the key salt-related technical challenges, potential future research directions, and technical approaches needed for large-scale development. We highlight how salt-bearing basins offer vast potential for development throughout the energy transition including, but not limited to: i) the likely demand for thousands of new hydrogen storage caverns inside salt bodies by 2050; ii) a likely early focus for porous media CO2 storage sites in basins strongly influenced by salt tectonics; and iii) enhanced geothermal energy potential in and around salt bodies. Effective exploitation of these resources will require a deeper understanding of the internal composition, geometry, and evolution of salt structures and their surrounding sediments, and potentially the development of more predictive models of salt tectonic behaviour. Critically, we see the need to integrate learnings of salt tectonics gained in the academic, mining, solution mining, and oil and gas communities, and apply a fresh perspective to answer research questions of relevance to the energy transition. Developing this new understanding will help optimise design, reduce geotechnical risk, and improve efficiency for energy transition technologies, thus indicating a strong future demand for salt tectonic research.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have