Abstract

This study focused on the involvement of oxidative stress in the mechanisms mediating chemokine production in different cell sources during mild and severe acute pancreatitis (AP) induced by bile-pancreatic duct obstruction (BPDO) and 3.5% NaTc, respectively. N-Acetylcysteine (NAC) was used as antioxidant treatment. Pancreatic glutathione depletion, acinar overexpression of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant (CINC), and activation of p38MAPK, NF-κB and STAT3 were found in both AP models. NAC reduced the depletion of glutathione in BPDO- but not in NaTc-induced AP, in which oxidative stress overwhelmed the antioxidant capability of NAC. As a result, inhibition of the acinar chemokine expression and signalling pathways occurs in mild, but not in severe AP. However, MCP-1 and CINC expressions in whole pancreas and plasma chemokine levels were not reduced by NAC, even in BPDO-induced AP, suggesting that in addition to acini, other pancreatic cells produced chemokines by antioxidant resistant mechanisms. The high Il-6 plasma levels found during AP, both in NAC-treated and non-treated rats, pointed out cytokines as activating factors of chemokine expression in non-acinar cells. In conclusion, from early AP oxidant-mediated MAPK, NF-κB and STAT3 activation triggers the chemokine expression in acini but not in non-acinar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call