Abstract

This study aimed to investigate the role of therapeutic dexamethasone (Dex) treatment on the mechanisms underlying chemokine expression during mild and severe acute pancreatitis (AP) experimentally induced in rats. Regardless of the AP severity, Dex (1 mg/kg), administered 1 h after AP, reduced the acinar cell activation of extracellular signal-regulated kinase (ERK) and c-Jun-NH2-terminal kinase (JNK) but failed to reduce p38-mitogen-activated protein kinase (MAPK) in severe AP. In both AP models, Dex inhibited the activation of nuclear factor-kappaB (NF-κB) and signal transducers and activators of transcription (STAT) factors. All of this resulted in pancreatic down-regulation of the chemokines monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant (CINC). Lower plasma chemokine levels as well as decreased amylasemia, hematocrit and plasma interleukin-1β (Il-1β) levels were found either in mild or severe AP treated with Dex. Pancreatic neutrophil infiltration was attenuated by Dex in mild but not in severe AP. In conclusion, by targeting MAPKs, NF-κB and STAT3 pathways, Dex treatment down-regulated the chemokine expression in different cell sources during mild and severe AP, resulting in decreased severity of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.