Abstract

Alzheimer's disease is characterised by the progressive deposition of the 4 kDa beta-amyloid peptide (A beta) in extracellular senile plaques in the brain. A beta is derived by proteolytic cleavage of the amyloid precursor protein (APP) by various proteinases termed secretases. alpha-Secretase is inhibited by hydroxamate-based zinc metalloproteinase inhibitors such as batimastat with I50 values in the low micromolar range, and displays many properties in common with the secretase that releases angiotensin converting enzyme. A cell impermeant biotinylated derivative of one such inhibitor completely blocked the release of APP from the surface of neuronal cells, indicating that alpha-secretase cleaves APP at the cell-surface. A range of hydroxamate-based compounds have been used to distinguish between alpha-secretase and tumour necrosis factor-alpha convertase, a member of the ADAMs (a disintegrin and metalloproteinase-like) family of zinc metalloproteinases. Recent data suggests that the presenilins may be aspartyl proteinases with the specificity of gamma-secretase. Although APP and the presenilins are present in detergent-insoluble, cholesterol- and glycosphingolipid-rich lipid rafts, they do not behave as typical lipid raft proteins, and thus it is unclear whether these membrane domains are the sites for proteolytic processing of APP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call