Abstract
Inclusion body myositis (IBM) is characterised by infiltration of CD8+ T-cells and signs of protein aggregation such as rimmed vacuoles and inclusion bodies. Aggregated proteins include those present in neurodegenerative diseases, and also those involved in protein homeostasis. The aim of this review is to discuss the pathological effects of protein aggregates and the process of aggregation following immune attack in IBM. Immune attack is likely to cause protein aggregation by impairing endoplasmic reticulum (ER) and mitochondrial function. Apoptotic and necrotic pathways are activated, possibly leading to nucleo-cytoplasmic coagulation. Overexpression of nuclear and ribosomal proteins in rimmed vacuoles suggests that the vacuoles develop from the collapse of myonuclei and the surrounding ER. Aggregated proteins can activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome or provoke a humoral immune response. Heat shock proteins, ribosomal proteins and protein fragments may provoke interferon-gamma and cytotoxic T-cell responses in a similar manner to Mycobacterium tuberculosis antigens. Persistent provocation can lead to T-cell large granular lymphocytic leukaemia which is resistant to immunosuppression, and would explain the progression from polymyositis to IBM. Protein aggregates may impair the cellular machinery, and proteins may propagate along a myocyte in a prion-like manner. These pathological mechanisms may prevent myocyte regeneration following damage from eccentric muscle contraction, causing weakness and atrophy in a characteristic pattern. Further understanding of the mechanisms of protein aggregation in IBM may lead to additional therapies as well as novel muscle and blood biomarkers. Earlier diagnosis and treatment may result in improved outcomes when effective therapies are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.