Abstract

Soil type is an important factor defining terrestrial ecosystems and plays a major role for the movement of solutes and cycling of nutrients and carbon. This paper focuses on the effect of peat complex dual-porosity structure on nitrate reduction, with the main objective to show how this process is controlled by pore-scale mass transfer and exchange of nitrate between mobile and immobile pore fractions. A mesocosm experiment was conducted where input solutions of bromide (Br−) and nitrate (NO3 −) were continuously supplied downward into 40 cm depth of peat. Br− and NO3 − breakthrough curves were used to constrain transport parameters and nitrate reduction rates in the peat depth profile. The vertical distribution of potential nitrate reduction rates were compared with depth distributions of partitioning mobile-immobile pores and the exchange coefficient between the pores. The results showed that an increase of immobile pore fractions with depth increases the common interface surface area between mobile and immobile pores which constitutes to a more pronounced exchange between the two transport domains and enhances the nitrate reduction. Hence, the pore structure with mobile-immobile pore fractions and exchange rate of solutes between mobile and immobile phases play a major role in nitrate reduction in peat soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.