Abstract
Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways. This review summarizes our current understanding of polyphenol-mediated stress adaptations in plants, emphasizing the regulation and function of key phenylpropanoid pathway compounds. We discussed how various abiotic stresses, including heat and chilling stress, drought, salinity, light stress, UV radiation, nanoparticles stress, chemical stress, and heavy metal toxicity, modulate phenylpropanoid metabolism and trigger the accumulation of specific polyphenolic compounds. The antioxidant properties of these metabolites, including phenolic acids, flavonoids, anthocyanins, lignin, and polyphenols, and their roles in reactive oxygen species scavenging, neutralizing free radicals, membrane stabilization, and osmotic adjustment are discussed. Understanding these mechanisms and metabolic responses is crucial for developing stress-resilient crops and improving agricultural productivity under increasingly challenging environmental conditions. This review provides comprehensive insights into integrating phenylpropanoid metabolism with plant stress adaptation mechanisms, highlighting potential targets for enhancing crop stress tolerance through metabolic adjustment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have