Abstract

Background. Vitamin D deficiency represents a major healthcare problem. Vitamin D status is influenced by genetic and environmental determinants. Several observational studies have evaluated the association of single-nucleotide polymorphisms (SNPs) in vitamin D-related genes and vitamin D levels. Nevertheless, little is known about the role of these SNPs in the response to vitamin D supplementation. We conducted an interventional study to define the association between SNPs in vitamin D-related genes and the response to vitamin D supplementation in 100 self-reported healthy women of Arab ancestry for the majority. Methods. A total of 100 healthy female subjects received a weekly oral dose of 50,000 IU vitamin D for 12 weeks. Serum vitamin D concentration and metabolic profiles were measured at baseline and 12 weeks post-vitamin D supplementation. The genotypes of 37 SNPs selected from previously reported vitamin D-related genes have been assessed by Fluidigm genotyping assay. Results. Rs731236 (VDR gene) and rs7116978 (CYP2R1 gene) showed a significant association with vitamin D status. The rs731236 GG genotype and the rs7116978 CC genotype were associated with a “vitamin D sufficiency” state. Rs731236 GG and rs7116978 CC genotypes showed a higher response to vitamin D supplementation. Transcription factor binding site prediction analysis showed altered binding sites for transcription factors according to the different rs7116978 alleles. Interestingly, the 37 SNPs previously established to play a role in vitamin D-related pathways explained very little of the response to vitamin D supplementation in our cohort, suggesting the existence of alternative loci whose number and effect size need to be investigated in future studies. Conclusion. In this paper, we present novel data on vitamin D-related SNPs and response to vitamin D supplementation demonstrating the feasibility of applying functional genomic approaches in interventional studies to assess individual-level responses to vitamin D supplementation.

Highlights

  • Vitamin D plays an important role in the endocrine system, and it takes part in several biological processes such as blood pressure regulation, calcium and phosphate homeostasis, nerve conduction, skeletal development, erythropoiesis, and so forth. [1,2,3]

  • The 37 single-nucleotide polymorphisms (SNPs) previously established to play a role in vitamin D-related pathways explained very little of the response to vitamin D supplementation in our cohort, suggesting the existence of alternative loci whose number and effect size need to be investigated in future studies

  • The active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], regulates the expression of vitamin D-related genes involved in calcium transport and bone matrix protein [4,5]

Read more

Summary

Introduction

Vitamin D plays an important role in the endocrine system, and it takes part in several biological processes such as blood pressure regulation, calcium and phosphate homeostasis, nerve conduction, skeletal development, erythropoiesis, and so forth. [1,2,3]. Despite having ample sunshine, these regions register the highest rate of vitamin D deficiency [13]. This is partially explained by the limited sun exposure due to cultural practices. Other common risk factors in these regions include female gender and clothing style, multiparity, sedentary lifestyle, and low intake of vitamin D and calcium from the diet [14,15]. Little is known about the role of these SNPs in the response to vitamin D supplementation. SNPs in vitamin D-related genes and the response to vitamin D supplementation in 100 self-reported healthy women of Arab ancestry for the majority. Serum vitamin D concentration and metabolic profiles were measured at baseline and 12 weeks post-vitamin D supplementation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call