Abstract

A model to describe the kinetics of the compaction of conductive nitride ceramics using electropulse technologies is developed. The relationship between density and pressure is established on the basis of three components of the geometric, plastic and stressed state, which is affects the contact area between the particles. The model takes into account the change in the relative area of the interpartial contacts under the action of two mechanisms of mass transfer-diffusion and plastic flow. It is shown that a decrease in the particle size of the powder leads to an in-crease in the diffusion contribution and a decrease in the plastic flow, at all other conditions being equal. And for the case of nano-sized particles, diffusion mass transfer is predominant. Increasing in the heating rate leads to a decrease in the contribution of dif-fusion mass transfer at equal temperatures, as well as to an increase in the temperature of the beginning of shrinkage. The processes of plasma-plasma sintering, high-voltage electro-pulsed consolidation and hot pressing control the same mechanisms, plastic flow and diffusion mass transfer, which do not require, in the first approximation, the influence of the electric current on the properties of materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.