Abstract
In this contribution, we focus on the consequences of the piezoelectric field, which is an inherent consequence of the commonly used wurtzite phase of GaN, on the optical properties of strained GaN-based quantum well structures. We demonstrate that both in GaN/AlGaN and in GaInN/GaN single quantum well structures, the piezoelectric field leads to a Stark-shift of the fundamental optical transitions, which can lead to luminescence emission far below the bulk bandgap. Due to the spatial separation of the electron and hole wavefunctions in such structures, the oscillator strength of these transitions may become extremely small, many orders of magnitude lower than in the field-free case. From specially designed structures, we can even determine the sign of the piezoelectric field and relate it to the polarity of the layers. Under high-excitation conditions, as found in a laser diode, the piezoelectric field is almost completely screened by the injected carriers. As a consequence, the stimulated emission is significantly blue-shifted compared to the photoluminescence, which has sometimes been confused with localization effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: MRS Internet Journal of Nitride Semiconductor Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.