Abstract
Xylose is a second-most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second-generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisome-deficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose-utilizing strain of S. cerevisiae. It was shown that peroxisome-less pex3Δ mutant possessed 1.5-fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.