Abstract

Subtypes of inhibitory GABAergic neurons containing Ca2+-binding proteins play a pivotal role in the regulation of spontaneous synchronous [Ca2+]i transients in a neuronal network. In this study it is shown that: (1) the interneurons that containing Ca2+-binding proteins at buffer concentration can be identified by the shape of Ca2+-signa1 in response to depolarization or activation of ionotropic glutamate receptors; (2) Ca2+-binding proteins are involved in desynchronization of spontaneous Ca2+ transients. At low frequencies of spontaneous synchronous [Ca2+]i transients (less than 0.2 Hz) neurons show quasi-synchronous pulsations. At higher frequencies, synchronization of spontaneous synchronous [Ca2+]i transients occurs in all neurons; (3) it is established that several synchronous oscillations with different frequencies coexist in the network and the amplitude of their depolarizing pulse also varies. This phenomenon is apparently the mechanism that selectively directs information in separate neurons using the same network; and (4) in one population of interneurons at high frequencies of spontaneous synchronous [Ca2+]i transients the inversion of Cl– concentration gradient is observed. In this case, the inhibition of GABA(A) receptors suppresses the activity of neurons in this population and excites other neurons in the network. Thus, the GABAergic neurons that contain Ca-binding proteins show different mechanisms to regulate the synchronous neuronal activities in cultured rat hippocampal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.