Abstract

AbstractThis article attempts to explain that parasitoids provide the evolutionary pressure responsible for relationships between habitat use and larval food plant use in herbivorous insects. Three species of butterflies of the genus Pieris, P. rapae, P. melete, and P. napi use different sets of cruciferous plants. They prefer different habitats composed of similar sets of cruciferous plants. In our study, P. rapae used temporary habitats with ephemeral plants, P. melete used permanent habitat with persistent plants, although they also used temporary habitats, and P. napi used only permanent habitat. The choice experiment in the field cages indicated that each of the three butterfly species avoided oviposition on plants usually unused in its own habitat, but accepted the unused plants which grew outside its own habitat. Their habitat use and plant use were not explained by intrinsic plant quality examined in terms of larval performance. Pieris larvae collected from persistent plants or more long lasting habitats were more heavily parasitized by two specialist parasitoids, the braconid wasp Cotesia glomerata and the tachinid fly Epicampocera succincta. The results suggest that Pieris habitat and larval food plant use patterns can be explained by two principles. The evolution of habitat preference may have been driven by various factors including escape from parasitism. Once habitat preference has evolved, selection favors the evolution of larval food plant preferences by discriminating against unsuitable plants, including those which are associated with high parasitism pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call