Abstract
Electron backscatter diffraction (EBSD) of the microtexture in the tertiary oxide scale after hot rolling were investigated. The surface asperity flattening and grain refinement of Fe3O4 were produced at a thickness reduction of 28% and a cooling rate of 28°C/s. Microtexture development of Fe3O4 manifests as a strong θ fibre parallel to oxide growth, including the {100}<001> and {001}<110> textured components, whereas the {0001}<101̅0> component dominates in α-Fe2O3 as the favoured basal slip. The tribological effect of α-Fe2O3 at the contact surface of steel and rolls was considered at low and high thickness reductions. The propagation of cracks along the Fe3O4 grain boundaries could create a dish to collect nanoparticles during lubrication and thereby changed the wear rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.