Abstract

Though the non-rubber components have long been recognized to be a vital factor affecting the network of natural rubber (NR), the authentic role of non-rubber components on the network during accelerated storage has not been fully illuminated. This work attempts to clarify the impact of non-rubber components on the network for NR during accelerated storage. A natural network model for NR was proposed based on the gel content, crosslinking density, and the non-rubber components distribution for NR before and after centrifugation. Furthermore, the effect of non-rubber components on the network was investigated during accelerated storage. The results show that terminal crosslinking induced by non-rubber components and entanglements are primary factors affecting the network formation during accelerated storage. By applying the tube model to analyze the stress-strain curves of NR, we found that the contribution of the entanglements to the network formation is larger than that of terminal crosslinking during accelerated storage. The work highlights the role of non-rubber components on the network during accelerated storage, which is essential for understanding the storage hardening mechanism of NR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.