Abstract

Saccadic eye-movements are fundamental for active vision, allowing observers to purposefully scan the environment with the high-resolution fovea. In this brief perspective we outline a series of experiments from our laboratories investigating the role of eye-movements and their consequences to active perception. We show that saccades lead to suppression of visual sensitivity at saccadic onset, and that this suppression is accompanied by endogenous neural oscillations in the delta range. Similar oscillations are initiated by purposeful hand movements, which lead to measurable changes in responsivity in area V1, and in the connectivity with motor area M1. Saccades also lead to clear distortions in apparent position, but only for verbal reports, not when participants respond with rapid pointing, consistent with the action of two separate visual systems in neurotypical adults. At the time of saccades, serial dependence, the positive influence on perception of previous stimulus attributes (such as orientation) is particularly strong. Again, these processes are accompanied by neural oscillations, in the alpha and low beta range. In general, oscillations seem to be tightly linked to serial dependence in perception, both in auditory judgments (around 10 Hz), and for visual judgements of face gender (14 Hz for female, 17 Hz for male). Taken together, the studies show that neural oscillations play a fundamental role in dynamic, active vision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call