Abstract

The coupled and uncoupled Langevin equations in two-dimensional collective space are used to study the neck dynamics of the mass asymmetric system 48Ca+238U at the above barrier energy. The results show that the coupling between the neck and radial degrees of freedom delays the transition from dinucleus to mononucleus, and correspondingly increases the lifetime of the dinucleus system. The lifetime of the dinucleus for the asymmetric system48Ca+238U is about 11.6 and 13.0 × 10−22 s, obtained with uncoupled and coupled Langevin equations. We calculate the evaporation residue (ER) cross sections for the 3n and 4n evaporation channels in the 48Ca+238U reaction leading to the formation of 283112 and 282112 isotopes in three different approaches, i.e., coupled, uncoupled and frozen approximation, and compare them with the experimental data. It is found that the results of the uncoupled and frozen approximation are in close similarity, while the coupling between the radial and neck degrees of freedom reduces the ER cross section by about 30%, compared with the case of frozen approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.