Abstract

Boron is an essential plant micronutrient responsible for several important functions. Boron availability in soils may be influenced by binding with soil organic matter (SOM), particularly with aromatic diol and polyphenol groups on SOM. The mechanism by which aromatic diols bind boron, however, remains unclear. The objective of this work is to further investigate interaction between boric acid and varying concentrations of an aromatic, polyphenolic SOM analogue (tannic acid at 5, 10 and 20 g L−1) from pH = 5–9. UV/Visible spectroscopy showed boric acid enhanced tannic acid deprotonation at pH = 7.0 and 9.0, resulting in singly deprotonated tannic acid subunits. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed boric acid/tannic acid binding for all concentrations at pH = 7 and 9, whereas binding at pH = 5.0 was observed only at 20 g L−1 tannic acid. Uncomplexed boron species were not evident at pH = 9.0, but were detectable at pH = 7.0 at lower tannic acid concentrations and prevalent at pH = 5.0, qualitatively indicating binding affinity increases from pH = 5.0 to 9.0. ATR-FTIR results indicated tetrahedral coordination of boron upon complexation to tannic acid with a monodentate mechanism. These results collectively highlight a transition of solution planar boric acid to a tetrahedral, monodentate coordination with a single phenol group in tannic acid polyphenols. This contrasts with previous spectroscopic studies, which indicated bidentate tetrahedral or monodentate trigonal planar orientations prevail at aromatic diol sites. This work presents a previously unobserved boric acid coordination mechanism to an SOM analogue and, therefore, may better inform prediction and modeling of boron behavior in soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.