Abstract

MnO2, as a representative manganese-based catalyst with many kinds of crystal forms, has been widely used to activate PMS. However, the role of morphological scale and crystal structures on the catalytic capability of MnO2 still lacks further study. In this study, four different crystal forms of MnO2 (α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2) are succeeded in being fabricated via hydrothermal processes and evaluated by activating PMS for the removal of Reactive Yellow X-RG, typical azo dye. Experiment results indicate that α-MnO2 with a one-dimensional structure exhibits the best catalytic performance among the four as-prepared MnO2, which can be attributed to its broadest crystal interplanar distance (0.692), the highest portion of Mn (III)/Mn (IV) (4.194), and lowest value of average oxidation state AOS (2.696). Correlation analysis confirms that interplanar distance is the most relative factor with the catalytic activity of MnO2 among the three studied factors (R2 = 0.99715). Meanwhile, the morphological scale structure of α-MnO2 can also account for its highest catalytic ability among the four as-prepared MnO2, including its large specific area and advantageous one-dimensional nanostructure. Furthermore, according to the response surface methodology, when the dosage of PMS is 2.369g/L, the dosage of α-MnO2 is 0.991g/L, and the initial dye concentration is 1025mg/L, the maximum removal rate of Reactive Yellow X-RG is up to 97.38%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.