Abstract

The role of mineralization of soil organic matter (SOM) in the mobilization of 137Cs was estimated on the basis of data on the biokinetic fractionation of the organic matter of soddy-podzolic sandy-loam and peat bog soils and on the coefficients of the soil-to-plant transfer of radiocesium under field conditions. The peat bog soils were richer than the soddy-podzolic soils in the total organic carbon (by 7.9–23.8 times), the potentially mineralizable carbon (by 2.4–6.5 times), and the carbon of the microbial biomass (by 2.9–4.6 times). The agricultural use of the soddy-podzolic and peat bog soils led to a decrease in the SOM mineralization capacity by 1.1–1.8 and 1.4–2.0 times, respectively. Simultaneously, the portions of the easily, moderately, and difficultly mineralizable fraction of the SOM active pool changed. The coefficients of the 137Cs transfer from the peat bog soils to plants were 3.3–17.6 times higher than those for the soddy-podzolic soils. The content of 137Cs in plants grown on the peat bog soils was 2–65 times higher than that in the mobile (salt-extractable) soil pool by the beginning of the growing season. Strong positive linear correlations were found between the coefficients of the soil-to-plant transfer of 137Cs and the total content of the SOM, the content of the microbial biomass, the content of the potentially mineralizable carbon, and the intensity of its mineralization. It was concluded that the decisive factors controlling the intensity of the 137Cs transfer from mineral and organic soils into plants are the SOM content and its mineralization potential. The mineralization of the SOM is accompanied by the release of both 137Cs and mineral nitrogen; the latter facilitates the transfer of radiocesium into plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call