Abstract
The collective adhesive behavior of epithelial cell layers mediated by complex macromolecular fluid environments plays a vital role in many biological processes. Mucins, a family of highly glycosylated proteins, are known to lubricate cell-on-cell contacts in the shear direction. However, the role of mucins mediating axial epithelial adhesion in the direction perpendicular to the plane of the cell sheet has received less attention. This article subjects cell-on-cell layers of live ocular epithelia that express mucins on their apical surfaces to compression/decompression cycles and tensile loading using a customized instrument.In addition to providing compressive moduli of native cell-on-cell layers, it is found that the mucin layer between the epithelia acts as a soft cushion between the epithelial cell layers.Decompression experiments reveal mucin layers act as soft, nonlinear springs in the axial direction.The cell-on-cell layers withstand decompression before fracturing by a cohesive failure within the mucin layer. When mucin deficiency is induced via a protease treatment, it is found that the axial adhesion between the cell layers is increased.The findings which correlate changes in biological factors with changes in mechanical properties might be of interest to challenges in ophthalmology, vision care, and mucus research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.