7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/adbi.202400483
Copy DOIJournal: Advanced biology | Publication Date: Dec 18, 2024 |
License type: CC BY 4.0 |
This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS). Additionally, the feasibility of loading macromolecules into pre-formed vesicles is demonstrated using electroporation, and a fluorescent protein as well as enzymes for a cascade reaction were sucesfully incorporated into the fully assembled polymersomes. These findings provide a foundation for developing enzyme-synthesized polymeric vesicles with controlled morphologies for various applications, e.g., in synthetic biology.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.