Abstract
Limited nutrient transport is hypothesized to be involved in intervertebral disc (IVD) degeneration. It is widely recognized that the dominant mode of transport of small molecules such as glucose is via diffusion, rather than convection. However, recent findings suggest a role for convection-induced by fast (motion-related) and slow (diurnal) dynamic loading in molecular transport of even such small solutes. The aim of this study was to investigate whether fluid exchange induced by simulated physiological loading (composed of both fast cyclic or slower diurnal loading) can influence the molecular transport of a small molecule through the cartilage endplate (CEP) into the nucleus pulposus (NP) of IVDs. The molecular transport of fluorescein through the CEP and into the NP was studied in a bovine CEP/NP explant model and loading was applied by an axial compression bioreactor. The loaded explants (convection and diffusion) were compared to unloaded explants (diffusion alone). In the initial 24h, there were no differences between loaded and unloaded explants, indicating that convection did not enhance molecular transport of small solutes over diffusion alone. Notably, after 48h which corresponds to two complete diurnal cycles of tissue compression, fluid exudation/imbibing and redistribution, the fluorescein concentration was significantly increased in the top and bottom layer of the explant, when compared to the unloaded explant. Slower diurnal cyclic compression of the IVD might enhance the transport of small molecules into the IVD although it could not be discerned whether this was due to diffusion/convection or a combination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.