Abstract

Kimberlites are complex, ‘hybrid’ igneous rocks because their parental magmas entrain abundant crust- and mantle-derived components that can be readily assimilated during ascent to surface. Recent studies of olivine zonation patterns have shown compositional relationships between xenocrystic cores and magmatic rims, suggesting that kimberlite melt compositions might be controlled by assimilation of mantle material during emplacement. However, the nature and extent to which this process, as well as assimilation of crustal material, influences melt compositions within single kimberlite fields remains unclear. To address this issue, we have conducted a comprehensive geochemical and petrographic investigation of kimberlites from eight pipes in the Kaavi-Kuopio field in Finland, which were emplaced on the southern margin of the Karelian craton during the Neoproterozoic (~550–600 Ma).While magmatic olivine rims are usually homogeneous in composition within and between kimberlites of a single cluster and field (e.g., Lac de Gras), the Kaavi-Kuopio kimberlites appear to represent a unique case where there are statistically significant differences between the average Mg# of olivine rims in different pipes (89.9 ± 0.2 to 88.5 ± 0.3). Importantly, the Mg# of magmatic olivine rims exhibit a strong correlation with the Mg# of their mantle-derived xenocrystic cores. Furthermore, the compositions of olivine cores and rims exhibit a robust relationship with those of magmatic spinel (e.g., Mg#, TiO2 contents). These geochemical variations also align with the mineralogy of the kimberlites: whereby abundances of phlogopite and oxides (e.g., spinel) are negatively correlated with olivine rim Mg#. The robust relationship between entrained and assimilated lithospheric mantle material (i.e. olivine cores) and magmatic components (i.e. olivine rims, spinel, and groundmass mineral abundance), combined with numerical modelling suggests that up to 10 wt% assimilation of lithospheric mantle material has modified the compositions of the Kaavi-Kuopio kimberlites. These new data are also consistent with significant variations in the lithospheric mantle composition of the Karelian craton beneath the closely spaced (<10 km) kimberlites. Finally, in addition to mantle assimilation, formation of Si-Fe-rich mica in some of the examined kimberlites might be linked to late-stage increases in oxygen fugacity potentially enhanced by crustal contamination. This study shows for the first time that variable assimilation of mantle and crustal material can generate significant variations in kimberlites derived from seemingly similar sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.