Abstract
Lignin is a natural polymer, one that has an abundant and renewable resource in biomass. Due to a tendency towards the use of biochemicals, the efficient utilization of lignin has gained wide attention. The delignification of lignocellulosic biomass makes its fractions (cellulose, hemicellulose, and lignin) susceptible to easier transformation to many different commodities like energy, chemicals, and materials that could be produced using the biorefinery concept. This review gives an overview of the field of lignin separation from lignocellulosic biomass and changes that occur in the biomass during this process, as well as taking a detailed look at the influence of parameters that lead the process of dissolution. According to recent studies, a number of ionic liquids (ILs) have shown a level of potential for industrial scale production in terms of the pretreatment of biomass. ILs are perspective green solvents for pretreatment of lignocellulosic biomass. These properties in ILs enable one to disrupt the complex structure of lignocellulose. In addition, the physicochemical properties of aprotic and protic ionic liquids (PILs) are summarized, with those properties making them suitable solvents for lignocellulose pretreatment which, especially, target lignin. The aim of the paper is to focus on the separation of lignin from lignocellulosic biomass, by keeping all components susceptible for biorefinery processes. The discussion includes interaction mechanisms between lignocellulosic biomass subcomponents and ILs to increase the lignin yield. According to our research, certain PILs have potential for the cost reduction of LC biomass pretreatment on the feasible separation of lignin.
Highlights
Lignocellulosic (LC) biomass is the most abundant plant material for the production and sustainable supply of liquid biofuels at a relatively low cost [1]
This study demonstrated that the removed lignin and the extent of lignin depolymerization for switchgrass and eucalyptus were higher than they were in pine which results in the following order: switchgrass > eucalyptus > pine
The aim of research on LC biomass delignification is to develop forms of technology that will be necessary for converting LC feedstocks into cost-efficient commodities
Summary
Lignocellulosic (LC) biomass is the most abundant plant material for the production and sustainable supply of liquid biofuels at a relatively low cost [1]. It mainly consists of sugar polymers (cellulose and hemicellulose) and lignin [2]. These three biopolymers, depicted, are the main constituents of plant cell walls [3]. Lignin is one of the three primary components of LC biomass which, protects cellulose and hemicellulose by providing mechanical strength and hydrophobic and indigestible properties to plant cell walls [5,6].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have